MA4J8 Commutative algebra II

6 Chapter 6. Cohen–Macaulay and Gorenstein

6.1 Depth is controlled by Ext^i vanishing in initial range

I assume the above prerequisites. This is based on [Ma, Th 16.6], although I find it clearer to start from the zero-dimensional case, that is the base of the proof by induction:

Lemma 6.1 Let A be a Noetherian ring with ideal I. Assume that finite A-modules M and N satisfy

- (1) $M \neq 0$ and *I*-depth M = 0.
- (2) N has Supp N = V(I). (That is, the prime ideals P with $N_P \neq 0$ are those with $P \supset I$.)

Then $\operatorname{Hom}(N, M) \neq 0$.

In the converse direction, if I-depth $M \ge 1$ and $\operatorname{Supp} N \subset V(I)$ then $\operatorname{Hom}(N, M) = 0$.

Lemma 6.1 is the case n = 0 of [Ma, Th 16.6].

Proof (1) is the statement that every $f \in I$ is a zerodivisor of M. Then $I \subset \bigcup P$ taken over all $P \in \operatorname{Ass} M$, a finite set, and by prime avoidance $I \subset P$ for some $P \in \operatorname{Ass} M$. Therefore M contains A/P as a submodule. The localisation M_P contains a copy of the residue field $k(P) = A_P/(PA_P)$.

On the other hand, (2) implies that $N_P \neq 0$, so also $N_P/(PN_P) \neq 0$ by Nakayama's lemma. Now $N_P/(PN_P)$ is a nonzero vector spaces over k(P), and M_P contains a copy of k(P), so there exists a nonzero k(P)-linear map $N_P/(PN_P) \rightarrow M_P$.

Thus $\operatorname{Hom}_{A_P}(N_P, M_P) \neq 0$, and since this equals the localisation at P of $\operatorname{Hom}_A(N, M)$, it follows that $\operatorname{Hom}_A(N, M) \neq 0$.

For the converse, recall Supp $N \subset V(I)$ means that $I \subset \operatorname{rad}(\operatorname{ann} N)$ [UCA, 7.1]. Thus every $s \in I$ has nilpotent action on N. If some $s \in I$ is a nonzerodivisor for M, it follows that $\operatorname{Hom}_A(N, M) = 0$. \Box

Theorem 6.2 Let A be a Noetherian ring with ideal I. Let M be a finite A-module. Write $\operatorname{Ext}^{i}(N, M)$ for $\operatorname{Ext}^{i}_{A}$. Equivalent conditions:

(0) I-depth $M \ge n$.

- (1) $\operatorname{Ext}^{i}(N, M) = 0$ for all $i \leq n 1$ and for all N with $\operatorname{Supp} N \subset V(I)$.
- (2) $\operatorname{Ext}^{i}(A/I, M) = 0$ for all $i \leq n 1$.
- (3) $\operatorname{Ext}^{i}(N, M) = 0$ for all $i \leq n 1$ and for some N with $\operatorname{Supp} N = (I)$.

The case n = 0 is Lemma 6.1. If $n \ge 1$ there is an *M*-regular element $s_1 \in I$, so work with the s.e.s.

$$0 \to M \xrightarrow{s_1} M \to \overline{M} \to 0$$
, where $\overline{M} = M/(s_1M)$,

and its long exact sequence

$$\begin{array}{l} 0 \to \operatorname{Hom}(N,M) \to \operatorname{Hom}(N,M) \to \operatorname{Hom}(N,\overline{M}) \xrightarrow{o} \\ \to \operatorname{Ext}^{1}(N,M) \to \operatorname{Ext}^{1}(N,M) \to \operatorname{Ext}^{1}(N,\overline{M}) \cdots . \end{array}$$

$$(6.1)$$

First assume (0). The quotient \overline{M} has depth $\geq n-1$, so $\operatorname{Ext}^{i}(N, \overline{M}) = 0$ for i < n-1 by induction. In the long exact sequence of Exts, this gives

$$0 \to \operatorname{Ext}^{n-1}(N, M) \xrightarrow{s_1} \operatorname{Ext}^{n-1}(N, M)$$
(6.2)

so that s_1 is injective.

Now multiplication by s_1 on N is nilpotent because $\operatorname{Supp} N \subset V(I)$. The s_1 in (6.2) can be viewed¹ as the contravariant functor applied to $N \xrightarrow{s_1} N$, so that the multiplication by s_1 on Ext^{n-1} is also nilpotent. As in Lemma 6.1, if a map is both injective and nilpotent, the module it act on is zero.

This proves (0) implies (1), and (2), (3) are trivial.

The proof that (3) implies (0) is a straightforward induction on n. If M satisfies (3) then $\operatorname{Ext}^{i}(N, \overline{M})$ is sandwiched between $\operatorname{Ext}^{i-1}(N, M)$ and $\operatorname{Ext}^{i}(N, M)$ in the Ext long exact sequence (6.1), so is zero for all $i \leq n-2$. Therefore \overline{M} has depth $\geq n-1$ by induction, so M has depth $\geq n$. \Box

Corollary 6.3 Let A be a Noetherian ring, I an ideal and M a finite module with $IM \neq M$. Then I-depth M is determined as the length of any maximal regular sequence in I, or by

$$I-\operatorname{depth} M = \inf\{i \mid \operatorname{Ext}^{i}(A/I, M) \neq 0\}.$$
(6.3)

Two ideals I_1, I_2 have $V(I_1) = V(I_2)$ if and only if $rad(I_1) = rad(I_2)$, and then Theorem 16.6 gives I_1 -depth $M = I_2$ -depth M.

¹This argument uses compatibility between Ext as a covariant functor in M, and as a contravariant functor in N. To spell that out: the s_1 in (6.2) originally came from the covariant functor in M. That is, $\operatorname{Ext}^{n-1}(N, M)$ is $H_{n-1}(\operatorname{Hom}(N, I_{\bullet}))$ where $M \to I_{\bullet}$ is an injective resolution; then $s_1 \colon M \to M$ gives rise to $s_{1\bullet} \colon I_{\bullet} \to I_{\bullet}$. Now in the context of $\operatorname{Ext}^{\bullet}(N, M)$, multiplication by s_1 on $M \to I_{\bullet}$ has the same effect as s_1 acting on N by premultiplication. That is $N \xrightarrow{\alpha} M \xrightarrow{s_1} M$ is the same map as $N \xrightarrow{s_1} N \xrightarrow{\alpha} M$. And the same for homs into I_{\bullet} .

Ischebek's theorem This is not really new. It rewrites the conclusion of Theorem 16.6 for a local Noetherian ring A, m, replacing the restrictions on Supp M in (1–3) with conditions on the dimension of $A/\operatorname{ann} N$ – this involves an appeal to Krull's Hauptidealsatz or the δ = dim implication of the main theorem on dimension.

Lemma 6.4 Let A, m be a local Noetherian ring. Assume that dim $N \leq d$ and m-depth $M \geq n$.

Then $\operatorname{Ext}^{i}(N, M) = 0$ for i + d < n.

Choose a composition sequence $0 \subset N_1 \subset \cdots \subset N_{r-1} \subset N$ with each $N_j/N_{j-1} = A/P_j$ having dim $A/P_j \leq d$. The exact sequences

$$\cdots \to \operatorname{Ext}^{i}(N_{j-1}, M) \to \operatorname{Ext}^{i}(N_{j}, M) \to \operatorname{Ext}^{i}(A/P_{j}, M) \to \cdots$$

express $\operatorname{Ext}^{i}(N, M)$ as a successive extension of the $\operatorname{Ext}^{i}(A/P_{j}, M)$, so it is enough to prove that

$$\operatorname{Ext}^{i}(A/P, M) = 0$$
 for $i < n - \max \dim(A/P_{i})$.

Set $P = P_j$ and work by induction on $d = \dim A/P$. For a prime ideal P of a local ring A, m, if d = 0 then P = m, and Theorem 6.2 gives $\operatorname{Ext}^i(A/I, M) = 0$ for i < n as required.

For P with dim A/P > 0 there is an $x \in m \setminus P$ (a nonzerodivisor of the integral domain A/P). Consider

$$0 \to A/P \xrightarrow{x} A/P \to A/(P, x) \to 0$$

Now dim $(A/(P, x) = \dim(A/P) - 1 \le d - 1$ by dimension theory (the Hauptidealsatz). By induction, this gives $\operatorname{Ext}^{i}(A/(P, x), M) = 0$ for $i + d - 1 \le n$. By the long exact sequence of Exts

$$\cdots \to \operatorname{Ext}^{i}(A/(P, x), M) \to \operatorname{Ext}^{i}(A/P, M) \xrightarrow{x} \operatorname{Ext}^{i}(A/P, M) \to \\ \to \operatorname{Ext}^{i+1}(A/(P, x), M) \to \cdots,$$

multiplication by x is surjective on $\operatorname{Ext}^{i}(A/P, M)$ for $i + d \leq n$. Nakayama's lemma then implies that $\operatorname{Ext}^{i}(A/P, M) = 0$, which proves the result.

Corollary 6.5 A finite module M over a Noetherian local ring A, m has m-depth $M \leq \dim M$.

System of parameters and regular sequences Let A, m be local. Recall one of the characterisations of dimension: a system of parameters (s.o.p.) is a sequence $x_1, \ldots, x_n \in m$ that generates an *m*-primary submodule. This means that $A/(x_1, \ldots, x_n)$ is an Artinian quotient ring, so of finite length or zero dimensional. We set $\delta(A) = \min$ minimum length of a s.o.p., and eventually proved that $\delta(A) = \dim A$.

We define A to be Cohen-Macaulay if it has m-depth $A = n = \dim A$. Thus A has a regular sequence in m that is a s.o.p. In geometric terms, we can cut A down by a regular sequence to an Artinian quotient ring, with each step the quotient by a principal ideal.

Definition 6.6 (Cohen–Macaulay) A nonzero finite A-module M over a Noetherian local ring A, m is Cohen–Macaulay if m-depth $M = \dim M$. The local ring A is a CM ring if it is CM as an A-module.

The module $A/(x_1, \ldots, x_n)$ depends (of course) on the regular s.o.p. we choose – for example, we should be able to do the exercise of proving that $A/(x_1^s, x_2, \ldots, x_n)$ has length s times the length of $A/(x_1, x_2, \ldots, x_n)$. However, the condition that the s.o.p. be a regular sequence is independent of the choice. If one s.o.p. is a regular sequence, so is every other.

The length, or dimension over k = A/m of the final Hom module

$$\operatorname{Hom}_A(k, A/(x_1, x_2, \dots, x_n)) = \operatorname{Ext}_A^n(k, A).$$

is also independent of the choice of s.o.p.

Macaulay unmixedness (1912) Cohen–Macaulay rings and modules have miraculous properties:

Corollary 6.7 Let A be a Cohen-Macaulay ring of dimension n and $I = (x_1, \ldots, x_r)$ an ideal generated by r elements. Then A/I has dimension n-r if and only if (x_1, \ldots, x_r) is a regular sequence, and the quotient ring A/I is again Cohen-Macaulay.

If M is a Cohen-Macaulay A-module then every $P \in Ass M$ has the same height, dimension and depth:

$$\dim(A/P) = \dim M = \operatorname{depth} M.$$

If M is a Cohen-Macaulay A-module and x_1, \ldots, x_r a regular sequence for M then the quotient $M/(x_1, \ldots, x_r)M$ is again CM.

If M is Cohen-Macaulay then M_P is a CM module over A_P for every P in Supp M, and they all have the same depth

$$P$$
-depth M = depth _{M_P} M_P .

Lots of other easy corollaries [Ma, Sect 17] on the theme of unmixedness. [Macaulay 1912] worked with graded polynomial rings, [Cohen 1946] proved the same result for regular local rings.

6.2 Start of Gorenstein: the 0-dimensional case

Throughout this section, (A, m, k) is local Artinian. Recall that this implies Spec $A = \{m\}$. Define the *socle* of an A-module M to be the submodule

Socle
$$M = \{x \in M \mid mx = 0\}.$$

It is the biggest k-vector space of M. When we view k = A/m as an A-module, the socle is identified with $\operatorname{Hom}_A(k, M)$ – in fact, an A-homomorphism $\varphi \colon k \to M$ must take $1 \in k$ to an element $\varphi(1) \in \operatorname{Socle} M$, and $\varphi(1)$ determines φ .

Example 6.8 Start with $A = k[x, y]/(x^{n+1}, y^{m+1})$. It is a finite dimensional k-vector spaces with basis the monomials $x^i y^j$ for $i \le n, j \le m$. It is also a local ring with maximal ideal (x, y). For i < n multiplication by x is nonzero on $x^i y^j$, and for j < m multiplication by y is nonzero. Therefore Socle A is the submodule $k \cdot x^n y^m$, and is 1-dimensional as k-vector space.

It follows that multiplication of monomials

$$(f,g) \mapsto \text{coefficient of } x^n y^m \text{ in } fg$$

= $fg \mod m$ (6.4)

defines a k-bilinear perfect pairing $A \times A \to k$, with $\{x^{n-i}y^{m-j}\}_{i,j}$ the dual basis of A^{\vee} to the basis $\{x^iy^j\}_{i,j}$ of A. Here $A^{\vee} = \operatorname{Hom}_A(A, k)$ (made into an A-module by premultiplication). Under this pairing, premultiplication in A^{\vee} by x, y is the dual or transpose map of multiplication by x, y in A. Thus A has the vector space basis, with x and y mapping to the right and up, whereas the dual basis of A^{\vee} has dual multiplication maps pointing left and down:

$$y^{m} \rightarrow xy^{m} \rightarrow \cdots \qquad x^{n}y^{m}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \\ y \rightarrow xy \rightarrow \qquad \cdots \rightarrow x^{n}y$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$1 \rightarrow x \rightarrow x^{2} \rightarrow \cdots \rightarrow x^{n}$$

$$(6.5)$$

For a 0-dimensional local ring, Gorenstein is a condition that makes sense of this kind of self-duality in the slightly more general context, when monomial basis in the sense of linear algebra over a field is not meaningful. Also, dual to² the statement that A is projective, A^{\vee} is an injective A-module.

6.3 Self duality and self-injectivity of an Artinian ring

The standard textbook result is that an Artinian local ring A, m, k is injective as a module over itself if and only if its socle is 1-dimensional as a k-vector space.

Standard proof An Artinian ring is of finite length, so has a Jordan– Hölder sequence

$$0 \subset N_1 \subset \cdots N_{i-1} \subset N_i \subset \cdots N_{r-1} \subset A \tag{6.6}$$

with $N_i/N_{i-1} = k$ for each *i*. The last module N_{r-1} is necessarily the maximal ideal $N_{r-1} = m$ and the first N_1 is a 1-dimension k-vector subspace of the socle.

There are r steps, and at each the s.e.s. $0 \to N_{i-1} \to N_i \to k \to 0$ gives a long exact sequence

$$0 \to \operatorname{Hom}_{A}(k, A) \to \operatorname{Hom}_{A}(N_{i}, A) \to \operatorname{Hom}_{A}(N_{i-1}, A)$$

$$\xrightarrow{\delta_{i}} \operatorname{Ext}_{A}^{1}(k, A) \to \operatorname{Ext}_{A}^{1}(N_{i}, A) \to \cdots$$
(6.7)

All the modules here have finite length, and (6.7) gives

$$\ell(\operatorname{Hom}_A(N_i, A)) - \ell(\operatorname{Hom}_A(N_{i-1}, A)) = \ell(\operatorname{Hom}_A(k, A)) - \ell(\operatorname{im}(\delta_i)).$$
(6.8)

Summing over i gives that

$$\operatorname{Hom}_{A}(A, A) = r \times \dim_{k} \operatorname{Hom}_{A}(k, A) - \sum \ell(\operatorname{im}(\delta_{i})).$$
(6.9)

Now we are assuming that $\operatorname{Hom}_A(A, A) = A$ has length r. We also know that at the top end, $\operatorname{Ext}^1(N_r, A) = 0$, because $N_r = A$ is a free A-module.

Proof of \Rightarrow If dim Socle A = 1 then (6.9) implies that all the $\delta_i = 0$. Together with $\text{Ext}^1(N_r, A) = 0$ this gives that $\text{Ext}^1_A(k, A) = 0$, and hence A is an injective module by Baer's criterion.³

²I believe there is more to say on this topic. Saying that injective is "categorically" dual conceals the possibility of a more substantive module-theoretic duality.

³Recall that Baer's criterion states that an A-module M is injective if and only if $\operatorname{Ext}_{A}^{1}(A/I, M) = 0$ for every M and every ideal I. If A is Noetherian, this can be reduced to requiring that $\operatorname{Ext}_{A}^{1}(A/P, M) = 0$ for every $P \in \operatorname{Spec} A$. In our case, there is only one prime $\operatorname{Spec} A = \{m\}$.

Proof of \leftarrow Injective means that $\operatorname{Ext}_{A}^{1}(M, A) = 0$ so that all the $\delta_{i} = 0$, and then (6.9) obviously implies r = 1.

Self-duality

A third equivalent condition is a more precise form of self-duality: Any increasing JH sequence

$$0 \subset \cdots \subset N_{i-1} \subset N_i \subset \cdots \subset A$$

gives a decreasing sequence

$$A \supset \dots \supset N_{i-1}^{\perp} \supset N_i^{\perp} \supset \dots \supset 0$$

that is also a JH sequence.

Here $N_i^{\perp} = \operatorname{ann}(N_i) = [0:N_i]$ is the annihilator ideal of N_i in A. The inclusion $N_{i-1} \subset N_i$ makes $N_i^{\perp} \subset N_{i-1}^{\perp}$ a tautology, but there is no a priori reason why it should always be nontrivial and of relative length 1. The argument following (6.9) means that the single condition that the $\ell(\operatorname{Socle} A) = 1$ already guarantees this.

Dual basis

If we assume also that A is a k-algebra (and $k \subset A$ and A/m = k, with the same k), then the symmetric bilinear map $A \times A \to k$ given by multiplication $(a, b) \mapsto ab \mod m$ is a perfect pairing, so that A and $A^{\vee} =$ $\operatorname{Hom}_k(A, k)$ are isomorphic. There is a dual k-basis as in the above example $k[x, y]/(x^{n+1}, y^{m+1})$.

In the more general case, each step $N_{i-1} \subset N_i$ is given by adding one new generator n_i . The conclusion is that there is an element $q_i \in A$ that multiplies the new generator n_i to give $q_i n_i$ a unit of A (that is, $q_i n_i \notin m = N_{r-1}$), but multiplies the submodule N_{i-1} into m.

In the general case A may not contain a field. Then it does not make sense to refer to the $\{n_i\}$ as a "monomial basis".

6.4 Definition of Gorenstein

Now let (A, m, k) be a local Noetherian ring, with $n = \dim A \ge 0$. The simplest way of defining Gorenstein is to say that A is Cohen-Macaulay, with a regular sequence x_1, \ldots, x_n and that the Artinian quotient $\overline{A} = A/(x_1, \ldots, x_n)$ is Gorenstein as discussed above in 6.2.

I don't have time to take this discussion much further. The conclusion is that the above definition does not depend on the choice of regular sequence x_1, \ldots, x_n , and that questions involving Ext^i and injective resolutions of *A*-modules can be reduced to similar questions for \overline{A} . One sees that *A* Gorenstein is equivalent to *A* having finite injective dimension, with the injective dimension equal to $n = \dim A$. Matsumura [Ma, Theorem 18.1] gives half-a-dozen equivalent conditions, any of which could be taken as the definition.